
Applied Generative AI :
LLM Application Development
Bhattaraprot Bhabhatsatam, Ph.D.

https://bhattaraprot.com

Dates: 12 & 19 September 2025

Applied Generative AI : LLM Application Development

• Objective : Build practical skills in enhancing LLMs for real-world apps (with a
focus on study examples)

• Warning: AI is a rapidly evolving tech landscape
• Tools and techniques we cover today may become obsolete tomorrow

• Follow updates from sources like Hugging Face, OpenAI, or X

• Course Philosophy:
• Fundamentals first

• All examples are simplified for learning purposes

• Not intended for production use—adapt and test in real scenarios

• Understanding core concepts empowers you to adapt to future changes

Course Overview

Structure:

• Plain LLMs: Basics and simple enhancements

• RAG: Retrieval-Augmented Generation for knowledge integration

• MCP: Multi-Context Prompting for complex interactions

• Memory: Persistent state for conversational apps

Hands-On Focus:

• Code snippets, demos, and exercises

• Prerequisites: Basic Python, familiarity with APIs

• Tools We'll Use: Internet, Ollama, Python

Course Positioning — Fundamentals First
This Course

• Learn how RAG, MCP, and Memory work from scratch

• Build everything with Python + Ollama + Streamlit

• Understand the core mechanics before adding automation layers

• Transparency: see every step → chunking, embedding, retrieval, tool calls

In Future / Advanced Courses
• Cloud Platforms

• AWS Bedrock, Azure OpenAI, GCP Vertex AI, Cloudflare Workers

• Managed APIs & pipelines for scale and enterprise use

• Frameworks

• LangChain, LlamaIndex → manage RAG flows and agents

• Pre-built memory, routing, and orchestration modules

• Automation / Integration

• n8n, Airflow, Zapier → connect LLMs with business processes

• Automated pipelines: ingest data, trigger alerts, call APIs

What is an LLM?
Definition: Large Language Model (LLM)

• A type of AI trained on massive text datasets to generate human-like responses

• Examples: GPT-4, Llama 2, BERT

Core Capabilities:

• Text generation (e.g., stories, code)

• Translation, summarization, Q&A

• Pattern recognition from training data

Limitations (Plain LLM):

• Hallucinations: Makes up facts

• No real-time knowledge (cutoff dates)

• Stateless: Forgets previous context without engineering

Lab0 & Lab1

How Does an LLM Work?

High-Level Architecture: Transformer Model

• Input: Tokenized text (words → numbers)

• Processing: Attention mechanisms weigh word relationships

• Self-attention: "What matters in this sentence?”

• Multi-head attention: Parallel focus on different aspects

• Output: Probability distribution over next tokens → Generated text

• Further Reading / Visualization Tool (by Bert Bycroft):: LLM Visualization
https://bbycroft.net/llm

https://bbycroft.net/llm

Lab 2

Enhancing LLMs - Why and How?

• LLMs are powerful but brittle

• Need customization for domain-specific tasks

• Improve accuracy, safety, and efficiency

Key Techniques:

• System Prompt: Guide behavior at the start
• Example: "You are a helpful coding assistant. Explain concepts simply."

• Pros: No retraining; quick iteration

• Fine-Tuning: Train on custom data
• Methods: Full fine-tune (resource-heavy) vs. PEFT (e.g., LoRA for efficiency)
• Fine-tuning costs compute.
• Further Reading / Tools: LLaMA Factory: A framework for efficient LLaMA fine-tuning

https://github.com/hiyouga/LLaMA-Factory

RAG? (Retrieval-Augmented Generation)

Definition:

• RAG combines LLMs with external knowledge retrieval

• LLM + Search: Fetch relevant docs, then generate response

Why Use RAG?

• Fixes hallucinations: Grounds answers in real data

• Handles up-to-date info (beyond model cutoff)

• Scalable: No need to retrain for new knowledge

• Use Cases: Chatbots with company docs, Q&A over PDF

• When to Use: Any app needing factual accuracy

How Does RAG Work?

1. Index Data: Embed documents (e.g., via Sentence Transformers) into a vector
store (e.g., FAISS, Pinecone)

2. Query: User asks question → Embed query

3. Retrieve: Find top-k similar docs via cosine similarity

4. Augment: Stuff retrieved chunks into prompt

5. Generate: LLM responds using context

Challenges:

• Chunking: How to split docs?

• Relevance: Tune embedding model

Lab 3

	Slide 1: Applied Generative AI : LLM Application Development
	Slide 2: Applied Generative AI : LLM Application Development
	Slide 3: Course Overview
	Slide 4: Course Positioning — Fundamentals First
	Slide 5: What is an LLM?
	Slide 6
	Slide 7: Lab0 & Lab1
	Slide 8: How Does an LLM Work?
	Slide 9: Lab 2
	Slide 10: Enhancing LLMs - Why and How?
	Slide 11: RAG? (Retrieval-Augmented Generation)
	Slide 12: How Does RAG Work?
	Slide 13: Lab 3

