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Classical Computers — A Binary Input/Output Model

* Inputto CPU
* Datain binary form (bits)

* Processed by logical
operations (AND, OR, NOT,
etc.) on registers

 Output
* Also, in binary (e.g.,0or 1, or
sets of bits)
* Key Point

* All processing is effectively in
a binary, deterministic
framework

* Even parallel or multi-core
approaches remain bound by
binary logic
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Quantum Computing — Superposition &

Wavefunction

* Example: 2 Qubits in Superposition

 Actions Affect the Whole Wavefunction

* Applying a gate to one qubit transforms the
entire wavefunction

* This is fundamentally different from
classical bitwise operations

e Measurement

* Single Shot: Each measurement collapses
the superposition to one outcome

* Probability Distribution: Repeating the
measurement many times (multiple “shots”)
builds a statistical distribution reflecting
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Key Quantum Concepts: Wavefunction & Phenomena

* Quantum Wavefunction
* Represents information in quantum systems
* Complex amplitudes (phase + magnitude)
* Foundation for computing with qubits

* Quantum Phenomena
* Superposition: Qubits can exist in multiple basis states simultaneously
* Entanglement: Strong correlation between qubits that has no classical analogue
* Interference: Amplitudes can reinforce or cancel out, affecting measurement outcomes

* Quantum Parallelism
* Arises from these phenomena
* Allows certain computations to evaluate many possibilities “at once”



Desighing for Quantum Advantage

 Key Takeaway

* The goal of quantum computing design is to define and encode
information into a quantum wavefunction, then exploit superposition,
entanglement, and interference to achieve quantum parallelism and
potential speedups.

* Focus

* Harness quantum phenomena as much as possible

* Architect circuits or annealing processes to maximize quantum
advantage



Quantum Wave Equation & Quantum
Wavefunction

* What is the Quantum Wave Equation?
» Schrédinger’s Equation: Governs how the quantum wavefunction i) evolves over time.

* Replaced classical deterministic trajectories with probabilistic descriptions.

* Significance

* Foundation of Quantum Mechanics: By solving Schrodinger’s equation, physicists uncovered quantum
phenomena (superposition, entanglement, interference).

* Describes Dynamics: Provides the rule for how 1p(x, t)changes under various potentials or interactions.

* Keylnsight
* Wavefunction: Encodes all possible outcomes a system can exhibit.
* Schrodinger’s Equation: Dictates when and how those possibilities evolve orinteract.
*  Quantum Computing: Utilizes the wavefunction as a mathematical tool to describe qubit states and engineer
guantum operations.
* Reference
* E. Schrodinger (1926), Quantisierung als Eigenwertproblem, Annalen der Physik.

* R.P.Feynman, The Feynman Lectures on Physics, Vol. Ill.



Hydrogen Atom Wave Function Evolution

n(1-3): 1(0-2):

Visualizing Time Evolution of 0

the Quantum Wavefunction

t=0.00fs t=0.68fs

t=137fs t=2.05fs

Showing probability density evolution for quantum numbers:n=3,1=1, m=0



Encoding Data into the Wave function

e Wave function as Data

* We encode classical information into a quantum

* For two qubits, we might have

* Processing via Quantum Circuit

* A quantum circuit transforms [) over time
* Different circuit types or models = different quantum

wavefunction )

e Sss

computing paradigms

« Mathematical Tools

* Linear algebra (vectors, matrices)

« Complex numbers for phases and amplitudes

Bra—ket notation

Superposition
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Qubits, Bloch Sphere & Bra—Ket Notation

* From Wavefunction to Qubit
* Abstracting quantum state into a qubit

f = sin(g) a = Cos(g)

 Bra—Ket Notation
* Dirac Notation: | i ) (ket)and {1y | (bra)
* Represents vectors and dual vectors in Hilbert space
* Superposition:|y) = «|0) + p|1), with a2 + B2 =1
- |0yand |1y form the standard basis

* Equivalent Mathematical Forms
* Vector Form: | y) = (g)

* Bra-Ket Form: | ) = «|0) + B|1)
* State Vector : | y) = (a + bi)|0) + (c + di)|1)
 Bloch Sphere Representation: |y) = Cos(§)|0) + e—i¢sin(§)|1)

6 = Polar angle
@ = Azimuthal angle



Bloch Sphere: 1 qubit ) = cosI0)+ e sin)|1)
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Bloch Sphere: single qubit
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Computational basis states
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Probability

Computational basis states

As column vector: In basis notation:
[1+ 0i] 110> +0]1)
[0 + Oi]

As column vector: In basis notation:
[0 + 0i] 0|0y +1]1)
[1+ 0i]

As column vector: In basis notation:
[1/4/2 + 0i] (1/42)|10) + (1/4/2)]1)
[1//2 + 0i]



2 Qubits

General Two-Qubit State

lw) =[a+bi] =(a+Dbi)00)+(c+di)|l01 + (e + fi)|10> + (g + hi)[11)

Where:

e a2+b2+c2+d2+e2+f2+g2+h2=1(normalization)

e Each component represents amplitude for respective basis state:

e First: (a + bi) for |00)

e Second: (c + di) for |01)
e Third: (e + fi) for [10)

e Fourth: (g + hi) for [11)

|00) State

Vector form: Bra-ket form:

[1+0i] |00y =1]00) + 0|01 + O[10; + O|11)
[0+ 0i]

[0+ 0i]

[0+ 0i]

|01) State

Vector form: Bra-ket form:

[0+ 0i] |01y = 000> + 1|01 + 0[10) + O[11»
[1+0i]

[0+ 0i]

[0+ 0i]

|10) State

Vector form: Bra-ket form:

[0+ 0i] [10; = 000} + 0|01 + 1]10) + O|11)
[0+ 0i]

[1+0i]

[0+ 0i]

|11) State

Vector form: Bra-ket form:

[0+ 0i] [11) = 0]00» + 0|01 + 0|10 + 1|11)
[0+ 0i]

[0 + 0i]

[1+0i]



2 Qubits,

Basis State
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Lab 2-1 Introduction — Exploring the IBM
Quantum Composer

Getting Started
* Create an Account: Visit https://guantum.ibm.com and sign up for a free account.

Access the Quantum Composer:
* Login andopenthe Quantum Composer tool.

Key Features to Explore
e Circuit Composer: Drag and drop quantum gates to build quantum circuits.
« State Visualization: View the qubit’s state on the Bloch sphere after each gate operation.

Objectives for This Lab

* Read and Interpret Output States: Observe how quantum states (state vectors) change
after applying gates.

* Explore the Bloch Sphere:


https://quantum.ibm.com/

Computing Units of a Quantum Computer

Quantum Computing Units

A quantum computer’s computing unit defines how it manipulates the
quantum wavefunction to process algorithms.

These units determine the type of quantum computer, shaping both
the hardware and the way we implement quantum algorithms.

. Types of Quantum Computing Units

Gate-Based Quantum Computers: Use quantum gates and circuits
(e.g., IBM, Google, Rigetti).

Quantum Annealers: Solve optimization problems by finding energy
minima (e.g., D-Wave).

Measurement-Based Quantum Computers: Use entangled states
and measurements to compute.

Topological Quantum Computers: Encode information into
topological states for fault tolerance (e.g., Microsoft’s approach).

* The type of computing unit dictates:

How we design algorithms (gate-based, annealing, etc.)
Hardware capabilities and limitations
Efficiency for specific tasks

Superposition

Quantum Parallelism

State transforms over time
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Gate-Based Quantum Computers

* What is a Gate-Based Quantum Computer?
* Processes quantum information using quantum gates.

 Quantum gates operate on qubits to manipulate their states
(superposition, entanglement, interference).

* Like classical circuits but uses unitary transformations to modify the
quantum wavefunction.

* Mathematical Model

* Quantum gates are represented as unitary matrices
* U(aunitary matrix) = U'U=1
* Aguantum state evolves as: [¥') =Uly)



Gates-Based Quantum Computer
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The X Gate

« Mathematical Representation of the X Gate X = [[1] [ﬂ

* The X gate is the quantum equivalent of a classical NOT gate, flipping the qubit state 107 =11

11} — [0)
* Applying X Gate to |0)

Start with the qubit state:
Apply the X gate:

Result:



TABLE 2-2 Example of Quantum Gates

Gate Function Matrix
I No rotation _ ('l [})
0 1

X Rotate by m radians about the x- Y = (D 'l)
axis 1 0

Y Rotate by m radians about the y- V = (ﬂ —!'}
axis i 0

Z Rotate by « radians about the z- 7 = (1 0 )
axis 0 -1

S Rotat /2 radi bout z-axis (1 0

ate by m/2 radians about z-axis § = (D EEHIE}

H Rotate by n radians about a b = 1 (1 1 )

diagonal in x-z plane JZi1l -1

Quantum algorithms are designed by arranging gates in specific sequences to manipulate the
wavefunction and produce desired measurement outcomes.



Grover's Circuit — Designing Quantum
Algorithms

* Grover's Circuit Example o o
1 Iteration 2™ Jteration

* Demonstrates a quantum oracle diffuser  oracle diffuser
algorithm designed to solve a |
search problem.

G0 — il A —— =
. . g on plls X puoy X pUIS ¥ puey X SIS
Sucte: et Ssiimsinsin
* Input: Encodes the initial state of a: - & _ llT
the qubits. meas - o 1, 1: 1>

* Gates: A series of operations
applied step by step to transform
the wavefunction.

* Output: Measurement collapses
the state to reveal the result.

FIGURE-2-15--Quantum-Circuit-for-Grover s-Algorithm - Implementation¥



Lab 2-2 — Exploring Quantum Gates and Their Outputs

eLab Overview
e Explore how individual qguantum gates manipulate qubit states.

e Use the IBM Quantum Composer to visualize the effect of gates on qubits, both mathematically (state
vectors) and geometrically (Bloch sphere).

*What You’ll Do
e Start with a single qubit in the |0) state
*Apply various quantum gates (e.g., X, H, Z, S, etc.) and observe:
e State Vector Updates: How the qubit’s mathematical representation changes.
e Bloch Sphere Visualization: How the qubit’s position on the Bloch sphere evolves.
e Experiment with combinations of gates to understand their cumulative effects.
*Goals of the Lab
e Develop intuition about how quantum gates manipulate qubit states.
e Understand the relationship between gates, state vectors, and the Bloch sphere.

e Build familiarity with the IBM Quantum Composer interface.



Recommended Reading

eTopics to Review
eLinear Algebra
eBasics of vectors and matrices
eOperations: addition, multiplication, dot product
eSpecial matrices: unitary, Hermitian, and eigenvalues
*Quantum Phenomena
eSuperposition
eEntanglement
eQuantum interference

eSuggested Resources

eLinear Algebra
*“LinearAlgebra and Its Applications" by Gilbert Strang
eKhan Academy: Linear Algebra Tutorials (online free resource)
*3Blue1Brown’s YouTube series: The Essence of Linear Algebra

eQuantum Mechanics
*"Quantum Mechanics: The Theoretical Minimum" by Leonard Susskind
*MIT OpenCourseWare: Introduction to Quantum Mechanics (online free resource)
*|BM Quantum Documentation (link)



https://www.khanacademy.org/
https://ocw.mit.edu/
https://quantum-computing.ibm.com/
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The normalization constraint of quantum states, |ae|2 + |,8|2 = 1, allows you to
parametrize @ and b as

S
I

= cos(6/2), (5)

b = sin(6/2), (6)

where 6 goes from 0 to 7.
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