
Applied Generative AI :
LLM Application Development

Dates: 12 & 19 September 2025

Lab 2: LLM Programming with Python

• Learning Objectives
• Understand the skeleton of an LLM application in Python.
• Run the application in two modes:

• Command Line (CLI)
• Web Interface (Streamlit)

• Explore modular design for future extensions.
• Customize temperature and system prompt as fundamental LLM

parameters.

Lab 2: LLM Programming with Python :What We Built

• Core Architecture
• Config → choose provider/model
• Model Client → API wrapper (Ollama in this lab)
• Chat Engine → orchestrates prompt, response, history
• UI Layer → CLI or Web (Streamlit)

• Pluggable Components
• Placeholders for Memory, RAG, MCP
• Scales toward multimodal or multi-agent systems

Lab 2: LLM Programming with Python

Step 1: Activate Virtual Environment

Windows (PowerShell):
.\llm\Scripts\activate

macOS/Linux:
source llm/bin/activate

Step 2: Install Required Packages
- Download lab2_requirements.txt from bhattaraprot.com/lab2_requirements.txt
- Make sure the file is saved in your working directory.
- Install the required packages by running:

pip install -r lab2_requirements.txt

Lab 2: LLM Programming with Python

Step 3: Source Installation
- Download lab2.zip from bhattaraprot.com/lab2.zip
- Extract the contents and place them into

llm/src/lab2

- Navigate into the lab2 folde
- Verify the structure by listing files

ls –R or dir

Lab 2: LLM Programming with Python

Step 4: Run CLI Chat Client

python -m lab2.ui.cli

Step 5: Run Streamlit Web Chat

python -m streamlit run lab2/ui/streamlit_app.py

Lab 2: LLM Programming with Python

• Customize LLM Parameters
• Adjust Temperature
• Modify System Prompt
• Observe how behavior changes

Lab 2: Tips to Conclude Lab 2

• Temperature
• Controls creativity vs. determinism.
• Low (0.0–0.3): more precise, stable, repeatable answers.
• High (0.7–1.0+): more creative, diverse, less predictable.
• Try asking the same question multiple times with different temperatures.

• Experiment:
• Set temperature=0.1 → Ask: “Write a haiku about <<< >>>.”
• Set temperature=0.9 → Ask the same.
• Compare results → which feels more “robotic”? which feels more

“human”?

Lab 2: Tips to Conclude Lab 2

• System Prompt
• This is the initial role/instruction that frames the assistant’s behavior.
• Example in Lab 2:

• "You are a helpful assistant for a software lab. Be concise and clear."
• Changing this changes the persona and style of the LLM.

• Experiment:
• Change system prompt to:

• "You are a pirate who answers in sea shanty style."
• Ask the same question → “What is Retrieval-Augmented Generation?”
• Notice how same model + same temperature can still behave very differently.

Lab 2: Tips to Conclude Lab 2

• Session State
• Every chat session starts fresh with the system prompt and temperature.
• Once you close the CLI/Streamlit app, history and state are gone (for

now).

Lab 2: Discussion

• If you were building an HR chatbot, what system prompt would
you write to ensure it always answers politely and neutrally?

• If your app is for scientific summarization, would you choose a
low or high temperature? Why?

• How might changing the system prompt reduce the need for fine-
tuning?

• Imagine you forgot to save chat history — how could that affect
the user experience?

	Slide 1: Applied Generative AI : LLM Application Development
	Slide 2: Lab 2: LLM Programming with Python
	Slide 3: Lab 2: LLM Programming with Python :What We Built
	Slide 4: Lab 2: LLM Programming with Python
	Slide 5: Lab 2: LLM Programming with Python
	Slide 6: Lab 2: LLM Programming with Python
	Slide 7: Lab 2: LLM Programming with Python
	Slide 8: Lab 2: Tips to Conclude Lab 2
	Slide 9: Lab 2: Tips to Conclude Lab 2
	Slide 10: Lab 2: Tips to Conclude Lab 2
	Slide 11: Lab 2: Discussion

