
Applied Generative AI :
LLM Application Development

Dates: 12 & 19 September 2025

Lab 4: Simple RAG (Text-Only)

Upload → Chunk → Embed → Retrieve → Generate

Learning Objectives

• Understand how chunk size & overlap shape retrieval

• Measure RAG quality: retrieval vs. generation metrics

• Recognize failure modes (fragmentation, duplication, dilution)

• Know where to modify code to improve a RAG system

• frameworks

Simple RAG

• Indexing: Text files → chunks → embeddings → FAISS

• Retrieval: query → vector search (top-K)

• Generation: LLM answers using only retrieved context

• Your controls: chunk_size, overlap, k, prompt

Chunking Fits

• Loader → Chunker → Embedder → VectorStore

• Chunker output: id, text, source_id, start, end

• Step size s = chunk_size − overlap

• If L ≤ chunk_size: n = 1; else n = ceil((L − chunk_size)/s) + 1

Chunk Size & Overlap

• Smaller chunks: precise matches, but fragmentation risk

• Larger chunks: better recall, but potential dilution

• More overlap: fewer boundary misses, but more duplicates & index
size

• Heuristic start: 500–1200 chars, 10–20% overlap (tune per corpus)

Debugging

• Chunk Preview: counts, boundaries (start, end, length)

• chunk.log: exact splits for discussion

• Retrieved Context: duplicates & boundary misses

• With vs Without RAG: grounded vs hallucinated answers

Measuring RAG Quality — Retrieval

• Hit@K: any gold chunk present in top-K?

• Recall@K: #gold retrieved / #gold total

• MRR/nDCG: rank-sensitive retrieval quality

• Coverage: % questions whose support is retrieved

• Dedup rate: % near-identical items in top-K

Experiments

• Fix a query set; sweep chunk_size: 300, 800, 1200, 1600 (overlap
10–20%)

• Observe Hit@K, Recall@K, duplicates, groundedness

• Sweep overlap: 0 → 50% of chunk size; watch duplication vs recall

• Sweep k: 3, 5, 8, 10; look for noise beyond a threshold

Common Failure Modes

• Boundary miss: facts split across chunks

• Dup-bias: high overlap crowds top-K

• Dilution: huge chunks add noise

• Vocabulary drift: normalize casing/Unicode in loader

To Improve in the Code

• Chunking (lab4/rag/pipeline_text.py): token-based length; semantic
split; adaptive overlap

• Embedder (embedder.py): try stronger models; ensure L2-normalize

• Retrieval (vectorstore_faiss.py): MMR; hybrid BM25+dense; reranker

• Prompting (streamlit_app_rag_text.py): concise rules; cite chunk IDs

Deeper Research

• Adaptive chunking by content density

• Graph-augmented retrieval (entities/relations)

• Query planning/decomposition; fusion (RRF)

• Context compression (selective quoting / summarization)

• Learning-to-retrieve; Hallucination guards

Lab 4: Simple RAG

Step 1: Activate Virtual Environment

Windows (PowerShell):
.\llm\Scripts\activate

macOS/Linux:
source llm/bin/activate

Step 2: Install Required Packages
- Download lab4_requirements.txt from bhattaraprot.com/lab4_requirements.txt
- Make sure the file is saved in your working directory.
- Install the required packages by running:

pip install -r lab4_requirements.txt

LLM

Knowledge

Question

Answer

lab4/rag/pipeline_text.py

Diagram — Chunking Timeline (chunk_size & overlap)

Document (Length L)

chunk 0
[0..800]

chunk 1
[680..14
80]

chunk 2
[1360..2
160]

chunk 3
[2040..2
840]

chunk 4
[2720..3
520]

chunk 5
[3400..4
200]

chunk 6
[4080..4
880]

chunk 7
[4760..5
560]

Step size s = chunk_size − overlap. Larger overlap = more chunks &
duplication; smaller overlap = fewer chunks but risk of boundary misses.

Lab 4:

Step 4: Source Installation

- Download lab4.zip from bhattaraprot.com/lab4.zip

- Extract the contents and place them into

 llm/src/lab4

- Navigate into the lab4 folder

- Verify the structure by listing files

 ls –R or dir

Lab 4:

Step 4: Run Streamlit

python -m streamlit run lab4/ui/streamlit_app_rag_text.py

Step 5: Upload text file

 Upload logexam.txt

Lab 4:

Step 6:
System prompt:

“You are a security analyst. Use ONLY the provided CONTEXT chunks.

If the answer is not fully supported, say “I don’t know from the context.”

Always list the chunk IDs (or source_id + chunk_index) you used as citations.

Return concise bullet points.”

Exact-match / ID prompts

• “List every event mentioning CVE-2025-0175. Include

date/time, server, product/component, and action taken.”

• “Show all lines with /orders/view_order.php and list the

CVE numbers involved.”

• “Find ‘Path traversal in file upload’ incidents. For each,

give date/time, server, and product (e.g., GitLab).”

• “Which entries mention '' OR 1=1 --'? List date/time,

server, and targeted component.”

• “List all ‘Patch applied’ events. Include CVE, product, and

which service was restarted.”

Semantic / paraphrase prompts

• “Summarize attempts to break out of containers. Which CVEs and
servers are involved?”

• “Where do we see privilege-escalation attempts in the kernel?
Summarize by CVE and server.”

• “Group all OGNL/Struts remote-code-execution attempts: dates,
servers, and whether mitigated.”

• “Which logs indicate XSS payloads in ‘link’ fields? List products
and dates.”

• “Where does the log talk about SSRF via data source configuration?
Summarize by product and CVE.”

Aggregation / timeline prompts

• “For CVE-2025-0172, report earliest and latest timestamps, affected
servers, and all described vectors.”

• “Count events per CVE and show the top 5 by frequency; include any
Severity labels you find.”

• “Make a timeline for CVE-2025-0201: scans found, exploits attempted,
and patches applied.”

• “Which products or systems are tied to CVE-2025-21610? List each
with the evidence lines.”

• “Extract all endpoints/paths mentioned (e.g., /admin/deleteuser.php)
and map them to CVEs.

Hybrid & MMR “challenge” prompts

• Hybrid test (ID + concept): “For CVE-2025-0176, combine exact

ID matches with any paraphrased mentions (e.g., ‘kernel

escalation’ or ‘container runtime’) and summarize.”

• MMR effect: “Retrieve top evidence about SQL-injection attempts

across products; avoid near-duplicate chunks and keep diverse

examples.”

Tuning tasks (run each prompt with different
settings)
• Top-K: run at K=3 → 5 → 8.

– Watch: Hit@K, duplicate chunks, answer confidence.

• Chunk size / overlap: try 300/20, 800/120, 1200/200.

– Watch: boundary misses (small chunks), dilution (large chunks), near-dup

crowding (high overlap).

RAG Limits & Your Solutions

• From your Lab 4

– Identify a limitation you observe (e.g., boundary miss, duplicate top-
K, dilution, missed IDs, stale evidence).

RAG: Limitations

Limitations:
• Retrieval recall gaps (missed evidence, bad chunking/boundaries)

• Evidence quality/staleness & conflicts across sources

• Context window pressure → dilution or truncation

• Redundancy/ranking errors; wrong query intent

• Domain shift & multilingual edge cases

• Hallucinations even with context; weak attribution

• Privacy/compliance (PII, access control, auditability)

• Latency, cost, and update cadence of the index

• Evaluation difficulty: labels, faithfulness, human review

RAG Variant Example Apps Domains

Adaptive, structure-aware chunking Policy Q&A copilot; Contract clause finder;
SOP navigator for hospitals;

Compliance checklist explainer

Legal/compliance, university regulations,
healthcare guidelines, procurement/TORs,

technical standards (ISO/NIST)

Hybrid retrieval (BM25 + dense)

with RRF + MMR

CVE/incident triage bot; API/code search assistant;

Product/SKU catalog search; Financial filing finder

Cybersecurity, developer docs, e-commerce

catalogs, finance/regulatory filings

Freshness-aware RAG (time/recency signals) Regulatory update advisor; Vulnerability/patch

dashboard; Price/stock tracker Q&A

News/policy updates, security advisories, gov
circulars, market/pricing data, release

notes/Changelogs

Self-RAG (retrieve → generate → critique) Cautious clinical guideline explainer; Legal research
assistant with self-check; Student support FAQ with

verification

Healthcare (guidelines/SOPs), legal/policy research,

education knowledge bases, internal IT KBs

GraphRAG for narrative private data Multi-hop policy reasoning (e.g. Who must approve);
Root-cause analysis assistant; Impact analysis across

systems

Hospital SOPs, enterprise architecture docs,
pharma/biomed literature, complex program

governance

Cross-lingual RAG (Thai–English) Bilingual PDPA policy Q&A; TH-EN helpdesk search;
Cross-lingual procurement assistant;

Mixed-language course catalog Q&A

Public sector policies, university governance,

procurement, legal/compliance, education admin

RAG evaluation harness for regulated domains Faithfulness/groundedness scoring dashboard;
Red-team hallucination tester;

Retrieval quality monitor (Hit@K/nDCG)

Healthcare, finance, government, university
admin—any place needing auditability and evidence

trails

Continual-learning RAG

 (when to re-embed vs re-rank)

Change-aware support copilot;

Docs drift detector; Auto-refresh indexing policy engine

SaaS product docs, internal IT/DevOps runbooks,

security KBs, university websites/announcements

RAG Research ideas

	Slide 1: Applied Generative AI : LLM Application Development
	Slide 2: Lab 4: Simple RAG (Text-Only)
	Slide 3: Learning Objectives
	Slide 4: Simple RAG
	Slide 5: Chunking Fits
	Slide 6: Chunk Size & Overlap
	Slide 7: Debugging
	Slide 8: Measuring RAG Quality — Retrieval
	Slide 9: Experiments
	Slide 10: Common Failure Modes
	Slide 11: To Improve in the Code
	Slide 12: Deeper Research
	Slide 13: Lab 4: Simple RAG
	Slide 14
	Slide 15: Diagram — Chunking Timeline (chunk_size & overlap)
	Slide 16: Lab 4:
	Slide 17: Lab 4:
	Slide 18: Lab 4:
	Slide 19: Exact-match / ID prompts
	Slide 20: Semantic / paraphrase prompts
	Slide 21: Aggregation / timeline prompts
	Slide 22: Hybrid & MMR “challenge” prompts
	Slide 23: Tuning tasks (run each prompt with different settings)
	Slide 24: RAG Limits & Your Solutions
	Slide 25: RAG: Limitations
	Slide 26

